55 research outputs found

    Analysis of EpapGV gp37 gene reveals a close relationship between granulovirus and entomopoxvirus

    Get PDF
    The Epinotia aporema Granulovirus GP37 protein gene has been identified, located, and sequenced. This gene was similar to other baculovirus gp37, to entomopoxvirus fusolin gene, and to the chitin-binding protein gene of bacteria. Sequence analysis indicated that the open reading frame is 669 bp long (the smallest gp37 sequenced at present) and encodes a predicted 222-amino acid protein. This protein is glycosylated and specifically recognized by an entomopoxvirus fusolin antiserum. The pairwise comparison of EpapGV gp37 gene product with all the baculovirus sequences in GenBank yields high similarity values ranging from 45 to 63 % with Cydia pomonella Granulovirus gp37 being the most closely related. The phylogenetic analysis interestingly grouped the granuloviruses in a cluster more closely related to entomopoxviruses than to nucleopolyhedroviruses, suggesting a possible horizontal transfer event between the granulovirus group and the entomopoxvirus group.Fil: Salvador, Ricardo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Microbiología y Zoología Agrícola; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Ferrelli, Maria Leticia. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Berretta, Marcelo Facundo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Microbiología y Zoología Agrícola; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mitsuhashi, Wataru. No especifíca;Fil: Biedma, Marina Elizabeth. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Romanowski, Víctor. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Sciocco, Alicia Inés. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Microbiología y Zoología Agrícola; Argentin

    Functional characterization of wheat copalyl diphosphate synthases sheds light on the early evolution of labdane-related diterpenoid metabolism in the cereals

    Get PDF
    Two of the most agriculturally important cereal crop plants are wheat (Triticum aestivum) and rice (Oryza sativa). Rice has been shown to produce a number of diterpenoid natural products as phytoalexins and/or allelochemicals – specifically, labdane-related diterpenoids, whose biosynthesis proceeds via formation of an eponymous labdadienyl/copalyl diphosphate (CPP) intermediate (e.g., the ent-CPP of gibberellin phytohormone biosynthesis). Similar to rice, wheat encodes a number of CPP synthases (CPS), and the three CPS characterized to date (TaCPS1,2,&3) all have been suggested to produce ent-CPP. However, several of the downstream diterpene synthases will only react with CPP intermediate of normal or syn, but not ent, stereochemistry, as described in the accompanying report. Investigation of additional CPS did not resolve this issue, as the only other functional synthase (TaCPS4) also produced ent-CPP. Chiral product characterization of all the TaCPS then revealed that TaCPS2 uniquely produces normal, rather than ent-, CPP; thus, providing a suitable substrate source for the downstream diterpene synthases. Notably, TaCPS2 is most homologous to the similarly stereochemically differentiated syn-CPP synthase from rice (OsCPS4), while the non-inducible TaCPS3 and TaCPS4 cluster with the rice OsCPS1 required for gibberellin phytohormone biosynthesis, as well as with a barley (Hordeum vulgare) CPS (HvCPS1) that also is characterized here as similarly producing ent-CPP. These results suggest that diversification of labdane-related diterpenoid metabolism beyond the ancestral gibberellins occurred early in cereal evolution, and included the type of stereochemical variation demonstrated here

    Functional characterization of wheat ent-kaurene(-like) synthases indicates continuing evolution of labdane-related diterpenoid metabolism in the cereals

    Get PDF
    Wheat (Triticum aestivum) and rice (Oryza sativa) are two of the most agriculturally important cereal crop plants. Rice is known to produce numerous diterpenoid natural products that serve as phytoalexins and/or allelochemicals. Specifically, these are labdane-related diterpenoids, derived from a characteristic labdadienyl/copalyl diphosphate (CPP), whose biosynthetic relationship to gibberellin biosynthesis is evident from the relevant expanded and functionally diverse family of ent-kaurene synthase-like (KSL) genes found in rice (OsKSL). Here we report biochemical characterization of a similarly expansive family of KSL from wheat (the TaKSLs). In particular, beyond ent-kaurene synthases (KS), wheat also contains several biochemically diversified KSLs. These react either with the ent-CPP intermediate common to gibberellin biosynthesis or with the normal stereoisomer of CPP that also is found in wheat (as demonstrated by the accompanying description of wheat CPP synthases). Comparison with a barley (Hordeum vulgare) KS indicates conservation of monocot KS, with early and continued expansion and functional diversification of KSLs in at least the small grain cereals. In addition, some of the TaKSLs that utilize normal CPP also will react with syn-CPP, echoing previous findings with the OsKSL family, with such enzymatic promiscuity/plasticity providing insight into the continuing evolution of diterpenoid metabolism in the cereal crop plant family, as well as more generally, which is discussed here

    Fifty-Year Trend Towards Suppression of Wolbachia-Induced Male-Killing by Its Butterfly Host, Hypolimnas bolina

    Get PDF
    Some intracellular symbionts of arthropods induce a variety of reproductive alterations in their hosts, and the alterations tend to spread easily within the host populations. A few cases involving the spread of alteration-inducing Wolbachia bacteria in natural populations with time have been reported, but the investigations on the increasing trend in counteracting the bacterial effect on hosts in natural populations (i.e., increased resistance in hosts against the alterations) have been limited. In the present study, the prevalence of an alteration, killing of male Hypolimnas bolina (L.) (Lepidoptera: Nymphalidae) butterflies by their inherited Wolbachia strain in the wild in Japan, was surveyed over a continuous 50-year period, which is far longer than ever before analyzed in studies of dynamics between reproductive alteration-inducing symbionts and their host arthropods. Thus, the results in this study provide the first instance of a long-term trend involving a change in reproductive alteration; and it strongly suggests a change in the opposite direction (i.e., suppression of male-killing) in natural populations. This change in the current combination of the Wolbachia and butterflies appears to be dependent upon the host taxon (race)

    Analysis of EpapGV gp37 gene reveals a close relationship between granulovirus and entomopoxvirus

    Get PDF
    The Epinotia aporema Granulovirus GP37 protein gene has been identified, located, and sequenced. This gene was similar to other baculovirus gp37, to entomopoxvirus fusolin gene, and to the chitin-binding protein gene of bacteria. Sequence analysis indicated that the open reading frame is 669 bp long (the smallest gp37 sequenced at present) and encodes a predicted 222-amino acid protein. This protein is glycosylated and specifically recognized by an entomopoxvirus fusolin antiserum. The pairwise comparison of EpapGV gp37 gene product with all the baculovirus sequences in GenBank yields high similarity values ranging from 45 to 63 % with Cydia pomonella Granulovirus gp37 being the most closely related. The phylogenetic analysis interestingly grouped the granuloviruses in a cluster more closely related to entomopoxviruses than to nucleopolyhedroviruses, suggesting a possible horizontal transfer event between the granulovirus group and the entomopoxvirus group.Instituto de Biotecnología y Biología Molecula

    Germination of photoblastic lettuce seeds is regulated via the control of endogenous physiologically active gibberellin content, rather than of gibberellin responsiveness

    Get PDF
    Phytochrome regulates lettuce (Lactuca sativa L. cv. Grand Rapids) seed germination via the control of the endogenous level of bioactive gibberellin (GA). In addition to the previously identified LsGA20ox1, LsGA20ox2, LsGA3ox1, LsGA3ox2, LsGA2ox1, and LsGA2ox2, five cDNAs were isolated from lettuce seeds: LsCPS, LsKS, LsKO1, LsKO2, and LsKAO. Using an Escherichia coli expression system and functional assays, it is shown that LsCPS and LsKS encode ent-copalyl diphosphate synthase and ent-kaurene synthase, respectively. Using a Pichia pastoris system, it was found that LsKO1 and LsKO2 encode ent-kaurene oxidases and LsKAO encodes ent-kaurenoic acid oxidase. A comprehensive expression analysis of GA metabolism genes using the quantitative reverse transcription polymerase chain reaction suggested that transcripts of LsGA3ox1 and LsGA3ox2, both of which encode GA 3-oxidase for GA activation, were primarily expressed in the hypocotyl end of lettuce seeds, were expressed at much lower levels than the other genes tested, and were potently up-regulated by phytochrome. Furthermore, LsDELLA1 and LsDELLA2 cDNAs that encode DELLA proteins, which act as negative regulators in the GA signalling pathway, were isolated from lettuce seeds. The transcript levels of these two genes were little affected by light. Lettuce seeds in which de novo GA biosynthesis was suppressed responded almost identically to exogenously applied GA, irrespective of the light conditions, suggesting that GA responsiveness is not significantly affected by light in lettuce seeds. It is proposed that lettuce seed germination is regulated mainly via the control of the endogenous content of bioactive GA, rather than the control of GA responsiveness

    Non-etching Preparation and Stereoselective Semi-hydrogenation of Potassium Trifluoropropynyltrifluoroborate for Vinylogous Trifluoromethylation

    No full text
    Reported herein is a Z- and E-selective vinylogous trifluoromethylation via Suzuki coupling using the corresponding potassium trifluoromethylvinyltrifluoroborates. The large-scale preparation of the precursor of these trifluoromethylvinyl fragments, trifluoropropynylBF 3K, is described from BF3·OEt2 and trifluoropropynyllithium (generated from an inexpensive commodity chemical, HFC-245a), without using hydrofluoric acid. Time-dependent semi-hydrogenation of the alkyne using poisoned palladium catalysts to provide either Z- or E-CF 3-vinyltrifluoroborate and coupling to prepare Z- and E-β-trifluoromethyl styrenes in good yields and isomeric selectivity has been described. A facile protocol of the preparation of potassium organotrifluoroborates under non-etching conditions is also achieved
    corecore